What Are Regular Expressions?

 

Regular expressions are a way to describe a set of strings based on common characteristics shared by each string in the set. They can be used to search, edit, or manipulate text and data. You must learn a specific syntax to create regular expressions — one that goes beyond the normal syntax of the Java programming language. Regular expressions vary in complexity, but once you understand the basics of how they're constructed, you'll be able to decipher (or create) any regular expression.

عبارات منظم (regex) یک راه برای توصیف مجموعه ای از رشته ها بر اساس ویژگی های مشترک به اشتراک گذاشته شده توسط هر رشته در مجموعه است. عبارات منظم را می توان برای جستجو، ویرایش، و یا دستکاری متن و داده استفاده کرد. شما باید یک نحو(Syntax)  خاص برای ایجاد عبارات منظم یاد بگیرید - یکی که فراتر از نحو طبیعی زبان برنامه نویسی جاوا می رود. عبارات منظم در پیچیدگی متفاوت اند، اما زمانی که شما اصول اولیه ی چگونگی ساخته شدن آنها را درک کنید ، قادر خواهید بود به کشف (و یا ایجاد) هر نوع عبارت منظمی.

 

This trail teaches the regular expression syntax supported by the java.util.regex API and presents several working examples to illustrate how the various objects interact. In the world of regular expressions, there are many different flavors to choose from, such as grep, Perl, Tcl, Python, PHP, and awk. The regular expression syntax in the java.util.regex API is most similar to that found in Perl.

این دنباله به شما می آموزد که نحو عبارت منظم توسط رابط يا ميانجى برنامه کاربردىِ java.util.regex (java.util.regex API) پشتیبانی می شود و چند نمونه ی کاربردی برای نشان دادن اینکه چگونه اشیاء مختلف بر یکدیگر تاثیر می گذارند را ارائه می کند. در جهان عبارات منظم طعم های بسیار مختلفی برای انتخاب وجود دارند، مانند grep ، پرل، TCL، پایتون، پی اچ پی، و AWK  ! عبارات منظم در java.util.regex API بیشتر شبیه به چیزی است که در پرل پیدا میشود.

How Are Regular Expressions Represented in This Package?

عبارات منظم چگونه در این بسته ارائه می شوند ؟

 

The java.util.regex package primarily consists of three classes: Pattern, Matcher, and PatternSyntaxException.

بسته ی java.util.regex اساسا از سه کلاس تشکیل شده است Pattern : ، Matcher و PatternSyntaxException .

    A Pattern object is a compiled representation of a regular expression. The Pattern class provides no public constructors. To create a pattern, you must first invoke one of its public static compile methods, which will then return a Pattern object. These methods accept a regular expression as the first argument; the first few lessons of this trail will teach you the required syntax.

شی Pattern یک نمایش کامپایل شده از یک عبارت منظم است. کلاس Pattern هیچ سازنده عمومی ای (constructors) را شامل نمی شود. برای ایجاد یک Pattern، شما ابتدا باید یکی از کامپایل متد های public و static آن را فراخوانی کنید تا یک شی Pattern بازگردانده (return) شود. این توابع عبارت منظم را به عنوان آرگومان اول خود قبول می کنند ؛ چند درس اول این دنباله به شما نحو (Syntax) مورد نیاز را آموزش خواهد داد.

    A Matcher object is the engine that interprets the pattern and performs match operations against an input string. Like the Pattern class, Matcher defines no public constructors. You obtain a Matcher object by invoking the matcher method on a Pattern object.

شی Matcher موتوری است که الگو را درک می کند و عملیات تطابق (match) را روی یک رشته ی ورودی اجرا می کند.همانند کلاس Pattern، Matcher هم سازنده عمومی ندارد. شما یک شی Matcher را با فراخوانی تابع matcher روی یک شی Pattern بدست می آورید.

    A PatternSyntaxException object is an unchecked exception that indicates a syntax error in a regular expression pattern.

یک شی PatternSyntaxException یک استثنا کنترل نشده است که حاکی از آن است که یک خطای دستوری در الگوی عبارت منظم وجود دارد.

+ نوشته شده توسط سینا در چهارشنبه پنجم آذر 1393 و ساعت 6 PM |
ماقبل تاریخ
همانطور که متقدمین از روی تجربه و امتحان به خواص باطنی پاره‌ای از اجسام بی‌پرده و از ترکیب مواد به وسایل مختلف (تشویه، تکلیس، تقطیر و غیره) مواد شیمیائی بدست آورده و برای علمای شیمی جدید مایه‌ای درست کرده‌اند، همینطور هم تحقیق در خواص فیزیکی اجسام از مسائل تازه نیست و از قدیم الایام انسان درصدد کشف آنها بوده و از توجه به تغییرات و خواص ظاهری به بعضی اصول و قواعد فیزیکی پی برده و فیزیک جدید در حقیقت مولود توجهات و تحقیقات متقدمین می‌باشد.
مثلاً‌ تالس که قدیمی‌ترین و معروفترین حکمای سبعه است و تقریباً در شش قرن قبل از میلاد می‌زیسته محقق ساخت که از مالش کهربا خاصیتی در آن به ظهور می‌رسد که اجسام سبک را جذب می‌کند، همچنین فیثاغورث حکیم و ریاضی‌دان معروف یونانی و شاگردهایش به پاره‌ای مسائل و قضایای صوت پی برده بودند. (این دانشمند اول کسی است که زمین را متحرک می‌دانست).
ارسطو نیز در چهار قرن قبل از میلاد تئوریهای دقیقی در باب کائنات الجو (از قبیل جرثقیل، منجنق، میزان‌الغلظة و پیچ (پیچ ارشمیدس Vis sans pin) را اختراع نموده.
البته موضوع محاصرة سیراکوز را به توسط رومیان و سه سال مقاومت اهالی آن شهر را به وسیله نقشه‌های ارشمیدس اغلب در تاریخ دیده‌ایم. گویند یکی از وسایلی که ارشمیدس برای دفاع از وطن خود بکار می‌برد این بود که به وسیله آئینه‌های مقعر اشعه آفتاب را جمع کرده به جانب کشتیهای دشمن منعکس می‌ساخت وبدین‌وسیله آنها را آتش می‌زد.
همچنین قانونی را که راجع به «اجسام مرتمسة در مایعات» وضع کرده از قوانینی است که به وسیلة اتفاق غریبی به کشف آن نائل شده است:
هیرن پادشاه سیراکوز به زرگری دستور داده بود که تاجی از طلای خالص برای او بسازد، زرگر در ساختن تاجی تقلب کرده مقداری نقره با آن ممزوج کرده و نزد هیرن بود. اتفاقاً پادشاه به زرگر ظنین شد و برای اطمینان خاطر خود ارشمیدس را بطلبید و او را مأمور تحقیق خلوص یا عدم خلوص تاج نمود. ارشمیدس مدتها در این باب فکر می‌کرد ولی راه‌حلی به نظرش نمی‌رسید تا روزی که به حمام رفته بود در خزینه آب احساس کرد که دست‌ها و پاهایش سبکتر به نظرش می‌آید.
این مسئله کوچک روزنة امیدی برای او پیدا و بدین‌وسیله به کشف حقیقت بزرگی نایل گردید. معروف است که در اثر حالت غیرطبیعی که از اکتشاف مزبور برای ارشمیدس دست داده بود با همان حال برهنگی از حمام خارج و دوان دوان به جانب خانه سلطان روان گردید و فریاد می‌زد: Eureka! Eureka یعنی یافتم، یافتم . در واقع هم وسیله کشف تقلب زرگر را از روی کشف قانون کلی «تعیین وزن خالص مخصوص اجسام نسبت به آب» پیدا کرده بود.
قانونی را که ارشمیدس به وسیلة فوق موفق به کشف آن گردیده موسوم به D’Archimede Principle و به قرار ذیل می‌باشد:
بر کلیه اجسام مرتمسه در سیال (مایعات و گازها) فشاری از تحت به فوق وارد می‌آید که مقدار آن مساوی است با وزن سیال تغییر مکان یافته.
بالاخره بطلیموس (قرن دوم میلادی) منجم و ریاضی‌دان یونانی نیز تحقیقات عمیقی راجع به نور کرده و کتاب نفیسی در این مبحث از خود باقی گذارده است.
پس از بطلمیوس تحقیقات فیزیکی تا قرن ۱۳ میلادی متوقف شد و حتی می‌توان گفت که رو به انحطاط گذارد. فقط عده‌ای از قبیل جابر و محمدبن موسی در این رشته زحماتی کشیده و اطلاعات قابل توجهی کسب کرده بودند.
● قرون وسطی
اما تحصیل فیزیک در کشورهای غربی از قرون سیزدهم شروع می‌شود علمای معروف این علم در این قرن عبارتند از: راجر بیکن و آلبرت کبیر.
▪ در این عصر دو اختراع مهم بعمل آمد:
یکی آئینه‌های صیقلی و دیگری عینک (Salvino Degli-Armati)
در قرن چهاردهم استعمال ))قطب نما تعمیم یافت. قرن پانزدهم راجع به ««فیزیک تقریباً چیز مهمی ندارد.
بالعکس در قرن شانزدهم مخصوصاً مباحث ثقل و نور و مغناطیس رو به کمال رفته‌اند. در این زمان فراسکاتور (ایتالیائی) قانون ترکیب قوه، را وضع کرد،‌ Gardon ریاضیات را با فیزیک مربوط ساخت، Moralyeus عمل زجاجیه چشم را به واسطة آثار عدسیها به مورد تجربه گذارد.
جانسن ))میکروسکپ را اختراع «۱۵۹۰» و روبرت ««نورمن انگلیسی میل مغناطیسی را تعیین نمود. بالاخره ژیلبرت اولین تجارت علمی الکتریکی و مغناطیسی را در کتاب معروف خود (Magnete)تدوین و منتشر ساخت.
● فیزیک جدید
پایة فیزیک جدید در قرن هفدهم به توسط گالیله گذارده می‌شود؛ این دانشمند شهیر ایتالیائی متولد شهر پیزا رفته بود اتفاقاً چشمش به قندیلی می‌افتد که به سقف آویزان بود و آهسته نوسان می‌کرد چون خوب متوجه شد دید: نوسانات که رفته رفته از وسعت خود می‌کاستند زمانشان پیوسته تغییر ناپذیر می‌ماند _ بدین طریق قانون متحدالزمان بودن «Lsoc hronisme » نوسانات کوچک پاندول را کشف و بعد هم بلافاصله مورد استعمال آن برای تنظیم ساعتهای دیواری از نظرش خطور کرد.
دماسنج، ترازوی آبی و دوربین نجومی از اختراعات و اصول ««دینامیک جدید و عده‌ای از قوانین نقل از کشفیات اومی‌باشد.گالیله نه تنها فیزیکدان«« معروفی بوده بلکه در ««ریاضیات و نجوم مقامی بس ارجمند داشته. این دانشمند درسال ۱۶۰۹ اولین دوربین نجومی را در شهر ونیز بنا نهاد و به وسیلة آن حرکت ماه را بدور محور خود مشاهده کرد.
رصدهای دقیق گالیله او را به سلسله هیئت کپرنیک هدایت نمود و به عکس نظر به قدما که زمین را مرکز عالم سماوی می‌دانستند ثابت کرد که مرکز عالم شمسی آفتاب است نه زمین. بیان این نظریه در آن زمان در ایتالیا که به منزلة کفر و زندقه محسوب می‌شد و بخصوص دربار رم با این نظر بشدت مخالفت کرده و گالیله را وادار کردند سوگند یاد کند دیگر به اظهار چنین نظریه‌ای زبان نگشاید‌، گالیله نیز خواهی نخواهی قبول کرد ولی در سال (۱۶۳۲) در مراجعت به فلورانس کتابی تدوین و در آن جمیع ادله و براهین خود را در موضوع سلسلة هیئت مزبور بیان نمود.
باری دانشمند ایتالیائی برای صرف اظهار حقیقت اواخر عمر را بطور نیمه اسیر و شدیداً تحت نظر انگیزیسیون می‌زیسته تا اینکه بالاخره در سال (۱۶۴۲) زندگانی را بدرود و خود را از شر دشمنان علم و حقیقت آسوده ساخت.
اگر چه مخترع دماسنج گالیله می‌باشد ولی نقطه ذوب یخ را برای صفردماسنج (Hooke) قرار داد و ثبوت نقطه جوش آن را Halley تعیین کرد. بالاخره دماسنجی که صعود منظم درجات حرارت را نشان دهد به توسط Renaldini ساخته شد.
دکارت قوانین انکسار و تئوری رنگین کمان را بنا نهاد. توریچلی میزان الهوا را ساخت که پس از او پاسکال آن را برای اندازه‌گیری ارتفاعات بکار برد. تحقیقات و تجسساتی که پاسکال در تعادل مایعات کرد او را به اختراع منگنه آبی راهنما شد.
در همین دوره آکادمی دل سیمانتو Academie Del cimento که لئوپلد دومدیسی در فلورانس تشکیل داده بود کمک زیادی به پیشرفت شاخه های گوناگون فیزیک نمود.
چندی بعد در فرانسه نیروی جاذبه را اندازه گرفتند و مقدار (G) تصحیح شد (۸۱/۹متر) مجدداً اسحاق نیوتن بعد از شنیدن این خبر به خیال اول خود رجوع نموده و آن را موضوع حساب قرارداد، گویند در اواخر همین که دید نتیجه موافق پیش‌بینی اوست از فرط شعف نتوانسته محاسبه را به اتمام رساند.
اسحاق نیوتن به واسطه استدلال رفته رفته به کشف این قانون کلی نایل شد: هر دو ذره مادی یکدیگر را به نسبت معکوس مجذور فاصله و مقدار جرمشان جذب می‌کنند.
خلاصه این عالم شهیر به واسطه اکتشافات و اختراعات خود یک روح جدید به فیزیک (بخصوص مبحث نور) بخشید. حلقه‌های رنگین (Anneaux colrees) و تجزیه نور بالون اصلیه آن از اکتشافات و تلسکوپ آئینه‌دار از اختراعات او است.
رمر (Ronmer) سرعت نور را اندازه گرفت و ماریت (فرانسوی) و بویل (Boyle) (انگلیسی) قانون فشار گاز را وضع کردند.در درجه حرارت ثابت حجم هر بخار یا گاز با فشار ی که بر آن وارد می‌آید نسبت معکوس دارد .
بویل ماشین تخلیه هوا را که Otto de Cueriche قاضی عدلیه شهر ماگدبورگ اختراع کرده بود تکمیل نمود. بالاخره اولین طرح ماشین بخار به توسط Papin ریخته شد.
اگر چه قرن هجدهم برای فیزیک بدرخشندگی قرن هفدهم نمی‌باشد ولی به هرحال آن را قرن بی‌ثمری هم نمی‌توان نامید.
در این قرن صوت بر روی مبانی محکم قرار گرفت: قانون تارهای مرتعشه را سوور طرح‌ریزی، و تایلر(Taylor) و (Bevnoulli) و Euler و (D’Alambtrt) تکمیل کردند.
دوفه جذب و دفع‌های الکتریکی را تحت تحقیق درآورد. دوفه می‌گوید:
”من در تجربیات خود قانونی یافتم که غالب مشکلات را حل می‌کند و تا درجه‌ای راه تاریک را روشن می‌سازد.
اجسام الکتریزه هر چیز غیر الکتریک را جذب می‌کنند و چون الکتریزه شدند دفع می‌نمایند و تا طلائی را بدوا لوله بلوری الکتریزه جذب می‌کند ولی فوراً دفع می‌نماید و تا هنگامی که ورقه طلا مجاور جسم دیگری نشود تا الکتریسته آن را خارج شود جذب نمی‌گردد.”
علاوه بر این دفع الکتریسته را به دو بخش نموده و می‌گوید:
اتفاق به من قانون عمومی‌تر و مهمتری آموخت و در الکتریسته تغییری کامل داد و آن این است که الکتریسته دو نوع است که من یکی را شیشه‌ای و دیگری را سقزی می‌نامم. خواص دو نوع الکتریسته مزبور این است که دو الکتریسته هم جنس یکدیگر را دفع و دو الکتریسته مختلف‌ همدیگر را جذب می‌نمایند. بلور‌، سنگ، سنگهای بزرگ، پشم و بسیاری از اجسام دیگر جزء نوع اول و کهربا، سقزها، ابریشم، نخ، کاغذ و غیره، جزء نوع دوم می‌باشند.
بعد قوانین و اصول کولن در خصوص جذب و دفع باعث شد که الکتریسته تحت محاسبات دقیق درآید.
گری ثابت کرد که بدن انسان را می‌توان الکتریزه نموده و دوفه در تجربه‌ای که همه تماشاچیان را مبهوت ساخت از بدن انسان جرقه درآورد. در سقف اطاق خود چند ریسمان ابریشمی می‌آویخت و در زیر آن چیزی گهواره مانند بسته در آن می‌خوابید خود را با میله کلفت بلوری الکتریزه می‌نمود و چون کسی دست به طرف او دراز می‌کرد از بدنش جرقه می‌جست اولین دفعه‌ای که دوفه این تجربه را نمود موجب تعجب بسیار شاگرد خود آبه نله که بعدها عالم مشهوری شد گردید. آبه نله می‌گوید «هیچوقت تعجبی را که از رویت جهش جرقه از بدن انسان برایم دست داد فراموش نمی‌کنم». خلاصه کارهای دوفه به تجسسات بی‌فایده علما خاتمه داد و از آن بعد الکتریسته وارد تاریخ تازه‌ای گردید.
Muschenbroech بطری لید را اختراع کرد (۱۷۴۳) و فرانکل شباهت تخلیه الکتریکی و صاعقه را نشان داد و در نتیجه برق گیر را برای حفظ ساختمان از برق اختراع نمود. تجربه گالوانی، ولتا را به اختراع پیل (۱۸۰۰) یعنی اساس الکتریسته جاری هدایت کرد و آن به قرار ذیل است:
ابتدا ستون فقرات ناحیه قطنی قورباغه‌ای را به دو قسمت کرده فوراً قسمت تحتانی را پوست می‌کنند بعد مابین دو عصب قطنی را که در طرفین ستون فقرات مثل رشته‌های سفیدی به نظر می‌آیند مفتولی از مس داخل می‌کنند سر دیگر مفتول وصل به مفتول دیگرست که از روی ساخته شده، هر وقت سر مفتول مسی را به اعصاب قطنی وسر مفتول رویی را به عضلات یکی از پای قورباغه وصل کنیم پاهای حیوان تا شده و تکان می‌خورد و هر دفعه که این دو مفتول را مجاور آن دو عضو کنیم این اثر تجدید می‌شود: این دو فلز «مس و روی) که به شکل قوسی ساخته شده‌اند برای جریان الکتریسته با بدن قورباغه تشکیل مدار می‌دهد.
باید دانست که مبحث مغناطیس الکتریک نتیجه اکتشافات دو عالم سابق الذکر یعنی ارستد و آمپر می‌باشد و همانطور که نام این دو دانشمند در یک موقع و یک عصر و یک مبحث برده شده همانطور هم جهات تشبیه در بسیاری از مباحث بین ایشان موجود بود: اولاً هر دو معاصر بوده تولدشان دو سال و وفاتشان یک سال با یکدیگر فرق داشته‌، ثانیاً آمپر فقط یکسال بیش از ارستد عمر کرده (عمر آمپر ۷۵ و عمر ارتسد ۷۴ سال است). ثالثاً هر دو در ابتدای تحصیل در نهایت فقر و پریشانی بسر می‌بردند و به خرج و کفالت اولیای دیگر و معلمین خود تحصیل را تکمیل کردند. رابعاً ارتسد در عنفوان جوانی اشعاری می‌سرود که چندان بی‌اهمیت نبوده آمپر نیز قطعات نظمی گفته که بعضی از آنها را آراگو و دیگران ضبط کرده‌اند. پنجم آمپر فیلسوف و حکیم نیز بوده و ارستد هم فلسفه و حکمت را نزد بزرگترین فلاسفه یعنی کانت آموخته و از این علم نیز بهره کافی داشت، ششم در باقی علوم نیز با یکدیگر شباهت داشته باشند.
فاراده (Faraday) ابتدا الکتریسیته را بنا نهاد، اصول گالوانوپلاستی را ژاکبی اهل پتروگرادواسپنسر اهل لندن وضع الکینگتن و روالتس را مطلاکاری بکار بردند.
گالوانوپلاستی صنعتی است که توسط تجزیه الکتریکی فلزات را در قالب مخصوص رسوب و مورق می‌کنند به نحوی که به جدار آن نچسبد و خود تشکیل شکل درونی قالب را بدهد. چنانکه سابقاً ذکر شد آمپر عمرش وفا نکرد و بعد از او به نتیجه رسیدند چنانکه آراگو قانون او را تکمیل کرده و تعمیم داد و گوس یکی از بزرگترین ستاره شناسان و ریاضی دانان آلمان اختراع تلگراف را تکمیل کرده و بعدها طبیعی‌دان آمریکائی موسوم به مرس الفبائی برای تلگراف درست کرده دستگاه آن را ساخت و دستگاه تلگرافی وی که به تلگراف مرس موسوم است هنوز در کلیه کشورهای معمول و مرسوم می‌باشد. آراگو علاوه بر تکمیل قوانین آمپر و ارستد اکتشافات و تحقیقات علمی دیگر هم کرده است منجم««له ثابت کرد که در عالم خلاء وجود ندارد بلکه در تمام فضای لایتناهی جسم سیال بسیار رقیقی موسوم به ««اتر موجود است که در همه جا حتی در خلل و فرج اجسام جای دارد و نیز اثبات نمود که اجسام نورانی دارای ارتعاشات بسیار سریعی هستند و اثر این ارتعاشات را با سرعت زیادی به ما منتقل می‌کند. پس از تکمیل تلگراف طولی نکشید که به واسطه تجربیات هرتز آلمانی در خصوص انتشار امواج الکتریکی باب جدیدی برای تلگراف بی‌سیم باز شد چنانکه پس از او مارکنی ایتالیائی و برانلی فرانسوی تجربیات او را تعقیب و بالاخره تلگراف بی‌سیم را عمل کردند. در اینجا بی‌مناسبت نیست که بطور اختصار شرحی از تاریخ تلگراف بیان شود. در قدیم الایام بین چینی‌ها و یونانی‌ها و رومی‌ها مرسوم بود که در اوقات جنگ برای اخبار یا استخبار از وضعیات دستجات قشون خود و یا دادن دستورات سوق الجیشی در بالای برجهای مخصوص ویا قلل تپسه‌ها و کوه‌ها آتش روشن می‌کردند و به وسیله حرکت دادن مشعل‌های بزرگ و علامات و اشاراتی که قبلاً قرارداد کرده بودند مطالب خود را به طرف مقابل می‌فهماندند. مردم گل مرسومشان این بود که از افراد خود به فواصل متساوی پست می‌گذارند و این مأموران کنایات در مورد قرارداد را فریاد کنان به پست‌ها می‌رساندند.
پس از هجوم و استیلای وحشیان و تا مدتی بعداز آن یعنی تا قرن شانزدهم این نوع علائم اخباری از بین رفت. از قرن شانزدهم به بعد مجدداً این ترتیب مخابره شروع شد و تا قرن هجدهم ادامه داشت در این قرن کلدشاپ مهندس و فیزیکدان فرانسوی یک دستگاه تلگراف هوائی اختراع کرد و اولین دفعه مجمع کنوانسیون آن را برای پیغام و اطلاع خبر فتح کننده اتریشی‌ها به کار برد. بالاخره پس از آنکه دامنه الکتریسته وسعت یافت، واسطة انتقال اخبار جریان الکتریسیته شد. اولین دستگاه تلگرافی دنیا در سال ۱۷۷۴م به توسط لزاژ فرانسوی در ژنو ساخته شد. هر دستگاه تلگراف (باسیم) شامل چهار قسمت است: اولاً یک منبع الکتریکی از قبیل پیل یا آکومولاتر، ثانیاً یک دستگاه ارسالی خبر که بتوان منبع الکتریک را به وسیله مفتول‌های فلزی (سیم) به پست مقابل مربوط ساخت بطوری که تلگرافچی بتواند با اراده خود جریان را قطع و وصل کند. ثالثاً‌ سیم، واسطة ارتباط و هادی جریان الکتریسیته دستگاه ارسال است به دستگاه ضبط. چهارمً‌ دستگاهی برای ضبط خبر که به توسط آلات مخصوص علامت و رموز را در روی نواری از کاغذ ثبت کند. سیمهای تلگرافی بر سه نوعند: هوائی،‌ زیرزمینی و زیرآبی سیمهای هوائی _ زیرزمینی و زیرآبی سیمهای هوائی _ چون مقاومت سیمهای مسی چندان زیاد نیست و ممکن است زود بزود گسیخته شود لهذا سیمهای هوائی را با آلیاژهای مسی می‌سازند این مفتولها به واسطه مقره‌های چینی به تیرهای فلزی یا چوبی ثابت و در هوا نگاه داشته شده است. سیمهای زیرزمینی _ مرکب است از چند مفتول مسی بهم پیچیده که از یک ورقه ضخیم گوتاپیرکا پوشیده و روی آنرا یک ورقه سرب کشیده‌اند. سیم‌های زیرزمینی و زیرآبی _ این نوع سیمها معمولاً مرکبند از یک دسته هفت‌تائی مفتول مسی متصل به هم که روی آن را با یک ورقه ضخیم از جسم عایقی پوشانده‌اند. این ورقه عایق از سیمهای فولادی مستور است و دور این مفتولها نوار مارپیچی شکل علفی (از جنس شاهدانه) الوده به قطران پیچیده‌اند.
+ نوشته شده توسط سینا در شنبه شانزدهم آذر 1387 و ساعت 6 PM |
اگر ماهی را از آب بگیرید خیلی زود به علت کمبود اکسیژن می میرد; هیچ از خود پرسیده اید که چرا این وضعیت بوقوع می پیوندد؟ در حالیکه مقدار اکسیژن موجود در حجم معینی از آب تنها یک سیزدهم مقدار اکسیژن موجود درهمان حجم از هوا است!
پس چرا وقتی در محیط جدید مقدار اکسیژن سیزده برابر می شود، ماهی به علت کمبود اکسیژن می میرد؟!
بدون شک این رویداد پی آمد عدم توانایی ماهی در وفق یابی با محیط تازه است، لذا بایستی به بررسی مکانیزمی در بدن ماهی بپردازیم که قادر نیست از اکسیژن غنی هوا استفاده نماید اما می تواند مسئله بزرگ استخراج اکسیژن را که به مقدار ناچیز در آب وجود دارد برای خود حل نموده و اکسیژن مورد نیاز خود را به این روش تامین نماید.
یک ماهی صدگرمی رودخانه ای در حال استراحت حدود ۵سانتیمترمکعب اکسیژن در ساعت احتیاج دارد و وقتی فعالیت عادی خود را شروع نماید سه تا چهار برابر این مقدار اکسیژن نیاز دارد. اگر راندمان مکانیزم تنفسی آن در انتقال اکسیژن صددرصد باشد این ماهی بایستی در هر دقیقه ۱۵تا۳۰ سانتیمترمکعب آب را از سطح تنفسی اش عبور دهد تا اکسیژن مورد نیاز خود را تامین نماید.
جابجا کردن چنین مقدار اکسیژنی در هوا مشکل نیست، اما در آب کار و فعالیت زیادی را می طلبد زیرا چگالی آب تقریبا هزار برابر هوا، و غلظت و چسبندگی اش هم حدود صد برابر است. در انسان فقط یک الی دو درصد از اکسیژن دریافتی در ماهیچه ها برای کار شش ها مصرف می شود اما در ماهیان این مقدار بسیار بیشتر می باشد از طرفی سرعت انتشار اکسیژن در آب ۳۰۰هزار برابر آهسته تر از هوا می باشد.
پس چگونه یک ماهی بر این مسائل غامض فائق می آید؟ مسائلی که بسیار عظیم تر از مسائل تنفسی مهره داران زمینی می باشد و چرا ماهی در شرایطی بسیار آسان تر برای تنفس در روی زمین می میرد؟ قسمتی از جواب به این سوالات در ساختار مکانیزم تنفسی ماهی و طبیعت جریان روی آنها نهفته است. آبشش های ماهی از یک سری از صفحات بدقت تقسیم شده تشکیل شده اند که در نتیجه سطح زیادی را برای تماس با آب ایجاد می نمایند و آب در یک جهت از روی آنها عبور می نماید که این با جریان کشندی در شش پستانداران تفاوت دارد.
زمانی که ماهی از آب بیرون آورده می شود و در معرض هوا قرار می گیرد از دست رفتن پشتیبانی آب همراه با کشش سطحی سبب کوچک شدن شدید سطح آبشش ها می گردد که نتیجه این عمل در اکثر موارد کاهش شدید دریافت اکسیژن و مرگ خواهد بود.
کل سطح تنفسی در تماس با جریان آب بین ماهیان مختلف متفاوت است و این منطبق با حجم فعالیت هر گونه ای از ماهیان می باشد. برای مثال در ماهیان بسیار فعال مانند ماهی خال مخالی این سطح بیش از ۱۰۰۰میلیمترمربع برای هر گرم وزن بدن ماهی است که از ده برابر سطح خارجی بدن ماهی بزرگتر است.
برای اندازه گیری راندمان مکانیزم استخراج اکسیژن از آب، توانایی ماهی را در استخراج ۸۰درصد اکسیژن محلول در آبی که از سطوح برانش ماهی عبور می نماید مورد نظر قرار می دهند درصورتیکه بیشترین راندمان برای یک انسان که بتواند با ورزش و تنفس شکمی یعنی تنفس از ته شش ها که این عمل در ورزش هایی مثل «تای چی چوان» و «یوگا» آموزش داده می شود فقط استفاده از ۲۵درصد اکسیژن موجود در هوا امکانپذیر است. چنین راندمان بالایی در ماهیان بوسیله ویژگی ضدجریان تامین می شود، که رابطه ای است بین جریان خون در بدن ماهی و جریان آب و مکانیزم قدرتمند پمپاژی که بطور مستمر آب را از سطوح آبشش در تمام مدت چرخه تنفسی عبور می دهد.
● جریان ضدجریان بین جریان خون و جریان آب
اصول جریان ضدجریان در بسیار از موارد مختلف در بدن جانوران اتفاق می افتد که بدین وسیله مبادله موثر مواد محلول یا گرما بین دو مایع در جریان بوقوع می پیوندد این چنین سیستمی از گذشته های دور بوسیله مهندسین در مکانیزم مبادله گرما کاربرد داشته است کسی که برای اولین با اهمیت این پدیده را در فیزیولوژی حیوانات کشف کرد «ون دام» بود که در سال ۱۹۳۸چگونگی عمل این پدیده را در آبشش ماهیان شرح داد.
این پدیده بدین گونه است که وقتی خون در جریان خروجی در آبشش ماهیان که کاملا از اکسیژن تهی شده است با جریان آب پر از اکسیژن برخورد می نماید بر اثر کشش زیادی که در اکسیژن آب وجود دارد(بسیار بیشتر از خون همجوارش می باشد) اکسیژن از آب به خون انتقال می یابد.
این راندمان بالا به همین ضدجریان بستگی دارد زیرا اگر ما بصورت تجربی جریان آب عبورکننده از آبشش ماهیان را برعکس نماییم استخراج اکسیژن از۵۱درصد به ۹درصد کاهش می یابد. برای راندمان حداکثر، لازم است دو محلول آب و خون با همدیگر تماس نزدیکی را حاصل نمایند و سرعت جریان هر یک نسبت به دیگری تنظیم شود.
فاصله ای که در آن اکسیژن آب به گلبول های خون ماهی انتقال می یابد بسیار کوچک است زیرا گلبول های خون ماهی تقریبا به نازکی پهنای صفحات برانش ماهیان که در آنها گردش خون و آب صورت می گیرد، می باشند. خارج از این صفحات آب از هر دو طرف عبور می نماید و همچنین رابطه ای بین ضربان قلب ماهی و فرکانس تنفسی ماهی وجود دارد که بصورت یک مکانیزم واکنش دار حجم خون عبورکننده از برانش ها را تنظیم می نماید ضربان قلب معمولا از فرکانس تنفسی آهسته تر می باشد و در بعضی موارد قلب با فازهای ویژه ای از سیکل تنفسی همزمان می شوند. اما این همواره در کلیه گونه ها روی نمی دهد، برای مثال در ماهی قزل آلا فرکانس تنفسی با ضربان قلب تقریبا مساوی است و به تدریج این دو فرکانس خارج از این نظم می گردند هرچند که قلب تمایل دارد که وقتی دهان ماهی بسته است ضربه زند و در سایر موارد اغلب ضربان قلب از فرکانس تنفسی آهسته تر می باشد.
این چنین مکانیزمی این اطمینان را ایجاد می نماید که همواره مقدار کافی آب برای تامین اکسیژن خون ماهی در دسترس باشد و این بسیار مهم است زیرا حجم معینی از خون ماهی می تواند حدود ۱۰تا۱۵ برابر مقدار اکسیژنی را که همان حجم آب حمل می نماید دریافت کند.
● جریان مستمر از داخل آبشش ها
هنگامی که یک ماهی نفس می کشد دهانش را باز می کند و آب را وارد دهانش می نماید و بعد از عبور آب از میان آبشش ها از حفره های آبششی به داخل شکاف هایی که وقتی سرپوش آبشش انبساط حاصل کرده و از بدن ماهی فاصله می گیرند ظاهرمی گردند وارد می شوند.
این جریان منقطع که بداخل و خارج سیستم تنفسی ماهی برقرار است این ایده غلط را می دهد که آب در روی آبشش ها در جریان است شواهد توصیفی حقیقی تر از کار دستگاه تنفسی با ثبت تغییرات فشار در دو طرف آبشش با نشان دهنده های حساس کندانسور مانومتر حاصل گردیده است تجربیاتی که با سه نوع ماهی آب شیرین انجام گردیده نشان داده اند که بجز یک دوره بسیار کوتاه، همواره فشار داخل حفره دهان از فشار حفره های برانش بیشتر است و لذا این نتیجه حاصل می شود که آب بدون انقطاع از روی برانش ها عبور می کند و به همین سبب استخراج اکسیژن از آب افزایش می یابد.
این مکانیزم بوسیله دو پمپ که کمی از فازکارشان با هم متفاوت است ایجاد می گردد در ماهی فعالیت پمپاژ به علت تغییرات درحجم حفره ها که بوسیله عمل عضلات تولید می شود انجام می گردد. البته مکانیزمی که در برانش ها قرار دارند بسیار پیچیده تر از این شکل ساده است.
در طی فاز دم حفره دهان انبساط حاصل نموده و آب وارد دهان می شود و همزمان حفره های برانش انبساط حاصل می نمایند اما آب نمی تواند وارد دریچه های خارجی آن شود، زیرا پوسته دور لبه خارجی به صورت بک والو عمل می کند.
در طول انبساط حفره برانش، فشار هیدروستاتیک از فشار داخل حفره دهان کمتر می شود و سبب می گردد که آب در طول برانش ها رانده شود در این حالت حفره برانش بصورت پمپ مکش عمل می نماید در خلال فاز کم شدن حجم حفره دهان فشار داخل از فشار بیرونی همزمان که دهان شروع به بسته شدن می نماید بیشتر می شود و عملا بسته شدن مجرا انجام می گردد حتی در ماهیانی که قادر به بستن دهان خود بطور کامل نمی باشند به علت وجود لوله غشائی نازک که در لب های بالایی و پائینی ماهی قرار دارند مجرا عملا بسته می شود در خلا ل این فاز افزایش فشار در حفره دهان بیشتر از حفره های برانشی می باشد و آب به عبور از برانش ها ادامه می دهد در این حالت حفره دهان بصورت یک پمپ فشار عمل می نماید.
در خلال تقریبا تمام سیکل تنفسی، همواره فشار اضافی که تمایل دارد آب را وادار به عبور از برانش و از حفره دهان به حفره های برانش نماید وجود دارد. البته یک دوره بسیار کوتاه نیز وجود دارد که اختلاف فشار برعکس می شود و تمایلی برای ایجاد جریان در جهت عکس بوجود می آید. اما از آنجا که این زمان بسیار کوتاه و اختلاف فشار بسیار کم است تحرک کند آب اجازه ایجاد جریان برعکس را نمی دهد. لذا در این صورت جریان آب مستمری در روی برانش ها تشکیل می شود که جهت این جریان برعکس جهت جریان خون است لذا درصد بالایی از اکسیژن آب به گلبول های خون انتقال می یابد.
اما شکل جالب توجه مختلفی در این سیستم وجود دارند برای مثال در ماهیانی که بصورت غالب شناگر می باشند، پمپ دهان بهتر توسعه یافته است، هرچند که در بعضی موارد هیچ یک از دو پمپ کار نمی کند. این زمانی است که ماهی با شنا تحرکات خود را ایجاد نموده است مثال خوبی در این مورد ماهی خال مخالی است که اجبار دارد بطور مستمر شنا نماید تا جریان دائمی آب روی برانش هایش بر قرار باشد مثال دیگر کوسه پلنگی می باشد که در خلال شنا پمپ هایش کار نمی کنند اما به محض اینکه بصورت ساکن درآید پمپ ها شروع بکار می نمایند.
ماهیانی که اغلب یا تمام اوقات خود را در کف دریا سپری می نمایند دارای حفره برانشی بزرگتر که با شعاع های استخوانی اضافی تقویت می شوند، می باشند و پمپ مکش آنها نیز بهتر تکامل یافته است. ماهیانی مثل «گربه ماهی آمریکائی»، «گورنارد»، «دراگونت»، « په لیس» و سایر ماهیان پهن از این نوع هستند. برای مثال در ماهی دراگونت، انبسلط حفره های برانشی تدریجی می باشد، لذا یک اختلاف فشار کم ثابت روی برانش ها تشکیل می شود.
در فاز انقباض، آب از هر دو حفره حرکت کرده و از دریچه های باریک حفره برانشی خارج می شود. در ماهیان پهن که مدام روی یک طرف بدن خود قرار می گیرند وقتی در حال استراحت هستند و در کف اقیانوس بصورت مدفون شده در می آیند مسائل دیگر تنفسی ایجاد می گردد برای مثال برانش ها در هر دو طرف ماهیان «په لیس» و «کفشک» توسعه یافته اند و بدون شک آب از هر دو حفره برانشی پمپ می شود. در این حالت خطر ورود ماسه کف دریا و آسیب رساندن به برانش ها وجود دارد، لذا در این ماهی در فشار مشتق جریان برعکس نمی شود این بعلت کنترل عامل روی لوله های برانش می باشد که از ورود کمترین جریان نیز جلوگیری می نماید.
لذا منطبق با عادات ماهیان، ساختار برانش ها متفاوت می باشند. ماهیان کف زی عموما دارای سطوح برانش کوچک تر و مجاری خشن تری می باشند و مجاری از هزاران سوراخ ریز تشکیل شده اند که در بین تارهای برانش قرار گرفته اند.
دو ردیف صفحه ای نازک که در اطراف چهار قوس استخوانی در تمام مسیر در دو طرف ماهی انباشته شده اند تشکیل یک شبکه مشبک را می دهد که در تمام دیواره های حلق ماهی جای دارد. از آنجائیکه لبه های تارهای برانشی به علت ویژگی انعطافی اسکلت نگهدارنده اش به صورت اریب می باشد همواره لبه ها در تماس یکدیگرند و در نتیجه آب از شکاف هایی که بوسیله صفحات تارهای همجوار ایجاد شده اند عبور می نماید همین سطوح بالا و پائین تارها در حقیقت سطوح تنفسی را تشکیل می دهند سقوط همین چین های ثانویه موجب کم شدن سطح مبادله گاز ها و در نتیجه اختناق ماهی که از آب خارج شده است می گردد هرچه این چین ها به یکدیگر نزدیک باشند آنها بهتر یکدیگر را پوشش می دهند برای مثال در ماهی خال مخالی ۳۹تار در میلیمتر، و در شاه ماهی ۳۳ تار در میلیمتر می باشد.
در ماهیانی که حوالی سواحل زندگی می نمایند و تحت تاثیر جریانات کشندی قرار می گیرند، مانند گاو ماهیان، چین های ثانویه خیلی فاصله دار هستند و ۱۵رشته در میلیمتر است. انواع گونه های مختلف با توجه به تحت تاثیر قرار گرفتن در آب های ساحلی دارای ساختار متفاوت می باشند.
شبکه هایی که بوسیله برانش ها ایجاد گردیده اند بسیار باریک می باشند با یک نگاه به نظر می رسد که ابعاد بسیار کوچک این شبکه ها اجازه عبور آب کافی با اختلاف فشار تنها یک سه هزارم اتمسفر را(که در بسیاری از گونه ها وجود دارد) ندهند، اما تعداد سوراخ ها آنقدر زیاد است که آب کافی را عبور می دهند.
برای مثال در یک ماهی آب شیرین ۱۳۰گرمی تعداد این سوراخ ها به ۲۵۰هزار می رسد در سرعت های بالای جریان آب مقداری آب از بین لبه تارها قرار می نماید اما در حالت استراحت ماهی کل جریان برابر جریانی است که از سوراخ ها عبور می نماید. مقاومت سوراخ های برانش در تمام وضعیت های فعالیت ماهی یکسان نیست، بلکه متناسب با فعالیت، انعطاف پذیر می گردد.
فیلمبرداری از مارماهیان جوان نشان داده است که فاز مشخصی در چرخه تنفسی وجود دارد و آن زمانی است که لبه های رشته ها از هم باز می شوند و اجازه افزایش مدار کوتاه جریان را می دهند در خلال فعالیت پمپاژ، فرآیند تحت الشعاع برانش در مقابل بار افزایش اختلاف فشار می باشد.
تماس بین لبه های تارها بوسیله انعطاف پذیری شعاع های برانش برقرار می گردد و هیچ قدرت ماهیچه ای برای مجزا کردن آنها وجود ندارد. انقباض عضلات وقتی فعال می شوند که ماهی تحرکات سرفه ای انجام می دهد در این وضعیت شیب فشار برعکس شده و برعکس شدن جریان آب موجب تمیز شدن برانش ها می گردد.
● تنفس پوستی در آب
در بعضی از ماهیان مقداری از تبادل گاز در محیط آبی از طریق پوست صورت می گیرد. انتشار از طریق پوست نقش مهمی در تنفس ماهیان در مرحله نوزادی دارد. برای مثال در نوزاد ماهیان «سین برانچی فورم» جنوب شرقی آسیا، قبل از تکامل آبشش ها تنفس از طریق شبکه مویرگی تنفسی وسیع که درست در زیر سطوح بافت پوششی باله میانی، باله سینه ای و کیسه زرده قرار دارد، صورت می گیرد. ذکر این نکته جالب توجه است که این ماهی، آب بیشتری را به سمت سطح عقب بدن به گردش در می آورد و این در حالیست که جهت جریان خون، از سمت عقب به جلو بدن است.
بدین ترتیب جریان متقابل حاصل از آن برای بهینه کردن جذب اکسیژن در هنگام کاهش اکسیژن آب، موثر واقع می شود. وجود تنفس پوستی به میزان قابل ملاحظه در تعدادی از ماهیان بالغ ثبت و اندازه گیری شده است. اندازه گیری میزان تنفس پوستی در شش گونه ماهی استخوانی آب شیرین نشان داد که عمدتا تنها نیاز پوست به اکسیژن ازاین طریق تامین شده است.
بنابراین در ماهی «کاراس»، «سوف زرد»، «قزل آلای جویباری» و «قزل آلای قهوه ای پوست» عامل تبادل اکسیژن مورد نیاز برای سایر بافت ها نیست. فقط در ماهی بول هدسیاه فاقد فلس، پوست به عنوان یک اندام کوچک تنفسی عمل می کند و در حدود ۵درصد نیاز به اکسیژن را فراهم می سازد.
همچنین در ماهی پهن دریایی، انتشار اکسیژن از طریق پوست با مصرف اکسیژن توسط این اندام مطابقت دارد.
+ نوشته شده توسط سینا در شنبه شانزدهم آذر 1387 و ساعت 6 PM |
همه این تجربه‌های بصری ناشی از تحریک پشت چشم یا در واقع عصب بینایی است، که تجربه نور را به مغز منتقل می‌کند.
شاید شما هم از دوران کودکی به تجربه کرده باشید که فشار آوردن بر روی پلک‌های بسته ‌شده‌‌تان الگوهای نورانی مواجی را در مقابل‌ چشم‌‌های‌تان ایجاد می‌کند.
اما اگر در دوران بزرگسالی، هنگامی که دیگر روی پلک‌های‌تان فشار نمی‌آورید، میزان جرقه‌های نورانی که در مقابل چشم‌تان می‌بینید به طور قابل‌توجهی افزایش یابد یا دچار اختلال بینایی درازمدتی شوید، این امر ممکن است نشانه جداشدگی شبکیه (retinal detachment) باشد، که در آن شبکیه (پرده حساس به نورچشم) از محل خود در عقب چشم کنده می‌شود.
این عارضه یک فوریت جدی پزشکی است و باید فورا برای درمان آن به پزشک مراجعه کرد.
جرقه‌های نورانی و دیدن نورهایی در میدان دید می‌تواند با سردردهای میگرنی همراه باشد، یا به عنوان بخشی از "اورای" پیش از میگرن یا به علت میگرن چشمی رخ دهد.
اما سایر انواع فشار یا تحریک نیز می‌تواند مغز به دیدن جرقه‌های نورانی وادارد، و اغلب این تجربه‌های بینایی رایج و بی‌‌ضرر هستند.
درون کره‌های چشم ماده ژلاتینی ضخیمی وجود دارد که چشم را گرد و قوام‌دار می‌کند. هنگامی که مغز پیامی از شبکیه دریافت می‌کند، آن را به عنوان نور تفسیر می‌کند. بنابراین چه نوری وارد چشم شود یا نه، هر تحریکی بر روی شبکیه در مغز به صورتی نمایشی نورانی تعبیر خواهد شد.
اگر پس از عطسه کردن ستاره یا جرقه‌های نورانی در مقابل چشم‌های‌تان می‌بینید، ممکن است ناشی از فشار وارد آمده بر روی خود چشم یا ناشی از تحریک اعصاب مربوط به بینایی باشد.
اگر مدتی وارونه روی سر خود قرار بگیرید، یا پس از مدتی درازکشیدن به سرعت بلند شوید، فشار خون ممکن است کاهش پیدا کند؛ و مغز دچار محرومیت از اکسیژن می‌شود و محیط درون و اطراف چشم تغییر می‌کند و بر عصب بینایی تاثیر گذارده می‌شود.
همچنین هنگامی که عطسه می‌کنید، درون قفسه سینه‌ و سرتان فشار ایجاد می‌کنید، فشاری که هوا را با سرعت ۱۶۰ کیلومتر درساعت از مجاری تنفسی شما به خارج می‌راند. نیروی قوی ناشی از این عطسه می‌تواند شبکیه را به شدت تکان دهد.
مجموعه دیگری از پدیدارهای بینایی که ممکن است با جرقه‌های نورانی اشتباه شوند، مگس‌پران (floater) است، که ناشی از اختلالاتی در ماده ژلاتینی درون چشم یا زجاجیه است. مگس‌پران معمولا ناشی یا از ایجاد توده‌هایی درون زجاجیه یا ارتشاح سلول‌های خونی به درون آن است؛ این پدیده را بیش از همه هنگام خیره‌شدن به یک پس زمینه درخشان و یکنواخت مانند آسمان آبی می‌توان دید.
مگس‌پران با افزایش سن بیشتر می‌شود، چرا که به افزایش سن زجاجیه سیال‌تر می‌شود.
بنابراین در صورتی که بیماری خاصی ندارید و دچار حملات میگرن هم نمی‌شوید، دیدن جرقه‌ نورانی و مگس‌ پران نباید شما را نگران کند. مراقب افزودده شدن این پدیده یا تغییر قابل‌توجه در بینایی خود به عنوان علائم جداشدگی بینایی خود باشید، و در غیر این موارد از این نمایش نورانی جلوی چشمان‌تان لذت ببرید!
+ نوشته شده توسط سینا در شنبه شانزدهم آذر 1387 و ساعت 6 PM |
کودکی پرماجرا
فردریک گولاندهاپکینز در ۲۰ ژوئن ۱۸۶۱ در ایست‌پورن انگلیس در خانواده‌ای متوسط دیده به جهان گشود، پدرش برادرزاده «جرارد مانلی هاپکینز» یکی از شعرای معروف انگلیس بود. فردریک هیچ وقت طعم محبت پدر را نچشید زیرا وقتی که نوزاد بود، پدرش را از دست داد.مادرش نیز فقط به فکر خودش بود و تنها تا ده سالگی مسئولیت نگهداری فردریک را به عهده گرفت، سپس او را به یک مدرسه شبانه‌روزی سپرد. فردریک همیشه با میکروسکوپی که از پدرش به یادگار مانده بود به تماشای اجسام ریز می‌پرداخت. او به ادبیات نیز علاقه‌مند بود و گاهی اشعار کوتاهی هم می‌سرود.
● ورود به عرصه علم
در سال ۱۸۷۱ مادرش او را ترک کرد و به آنفیلد در لیورپول رفت و فردریک به مدرسه‌ای در لندن انتقال یافت. او علیرغم این‌که از مهر خانواده محروم شده بود اما در مدرسه بهترین نمرات را کسب می‌‌کرد، وقتی دوران دبیرستانش به پایان رسید، تصمیم گرفت وارد دنیای علم شیمی شود. ۱۷ ساله بود که دیپلم گرفت و با نوشتن یک مقاله در زمینه زندگی حشرات برنده جایزه انجمن ملوم لندن شد.او برای گذران زندگی در بانک سلطنتی لندن به استخدام درآمد تا بتواند از عهده هزینه تحصیل خود برآید. از این رو فردریک وارد دانشگاه لندن شد و به تحصیل در رشته شیمی پرداخت و به تجزیه و تحلیل سموم در بدن پرداخت.۲۲ ساله بود که فارغ‌التحصیل شده، سپس وارد دانشگاه پزشکی شد، او در آزمایشگاه به تحقیق در زمینه علم شیمی پرداخت. در سن ۲۸ سالگی مدال طلا در رشته شیمی از دانشگاه پزشکی لندن را دریافت کرد و مدرک کارشناسی‌اش را در زمینه سم‌شناسی و فیزیولوژی به دست آورد.همان زمان در دانشگاه با «جسی آ استیوز» دانشجوی رشته پزشکی آشنا شد و در سن ۳۶ سالگی با او ازدواج کرد. ثمره این ازدواج دو فرزند دختر بود. بعدها جاکیتا دختر بزرگش با نویسنده معروف انگلیسی «جی بی‌ پریستلی» ازدواج کرد.در سال ۱۸۹۸ با ارائه یک سخنرانی در دانشگاه کمبریج مورد توجه همه اساتید علم شیمی قرار گرفت و عضو انجمن هیئت مدیره این دانشگاه شد و به کرسی استادی دست یافت. فردریک علیرغم موفقیت‌های چشمگیرش در عرصه علم و دانش همیشه از لحاظ محبت والدین احساس خلاء می‌کرد.یک بار تصمیم گرفت به همراه همسر و دو فرزندش به دیدار مادرش برود. مادر او ازدواج کرده بود و فردریک را به طور کلی از یاد برده بود، برخورد مادر با او و خانواده‌اش بسیار سرد بود، تا جایی که فردریک از این‌که به دیدار مادرش رفته، احساس پشیمانی می‌کرد.
● کشف ویتامین‌ها
فردریک در آزمایشگاه، مخلوطی از انواع هیدرات‌های کربن، چربی‌ها، پروتئین‌ها و نمک‌ها را که برای بدن لازم است به یک گروه موش خوراند. چند هفته بعد مشاهده کرد که موش‌ها همگی مرده‌اند ولی گروه دیگر موش‌ها که در همان مدت همان مخلوط غذایی را همراه با مقدار کمی شیر خورده بودند، زنده ماندند. او نتیجه گرفت که شیر موادی دارد که برای زنده ماندن و رشد موش‌ها لازم است اما امروزه می‌دانیم این مواد ضروری، ویتامین‌ها هستند.در آن دوران دوست بسیار صمیمی فردریک «دکتر کریستین ایجکمان» بود که در زمینه بیماری‌ها تحقیق می‌کرد، او ثابت کرده بود که بیماری «بری بری» در نتیجه کمبود تغذیه ایجاد می‌شود. این امر راه را برای کشف ویتامین‌ها و مواد ویتامین‌دار مسئول بیماری بری‌بری یعنی «تیامین» هموار کرد. به این ترتیب ایجکمان به یاری فردریک برنده جایزه نوبل پزشکی در سال ۱۹۲۹ شد. لذا علم جدید تغذیه به سرعت گسترش یافت و اولین تحقیقات و نظریه‌ها در مورد ویتامین‌ها در همان سال‌ها به وسیله فردریک انجام شد و او به خاطر همین تحقیق، جایزه انجمن سلطنتی لندن را دریافت و به لقب «سر فردریک هاپکینز» نائل آمد.فردریک، فردی بسیار پرکار بود و به هیچ وجه از کار کردن و تحقیق در آزمایشگاه و مطالعه خسته نمی‌شد. او در طول شبانه‌روز فقط ۳ ساعت می‌خوابید و بقیه اوقات خود را صرف کسب علم و ارائه مقالات پزشکی و شیمی می‌کرد. فردریک بسیار خانواده‌دوست بود و همیشه می‌خواست فرزندانش در کنار او باشند.فردریک هاپکینز در ۱۶ می‌ ۱۹۴۷ در حالی که مشغول تحقیقات در آزمایشگاه دانشکاه کمبریج بود به دلیل سکته قلبی در سن ۸۶ سالگی چشم از جهان فرو بست، بعدها مجسمه یادبود وی را در کمبریج بنا کردند تا نسلهای آینده این دانشمند برجسته را که گام بزرگی در علوم تغذیه گذاشت به فراموشی نسپارند.
+ نوشته شده توسط سینا در شنبه شانزدهم آذر 1387 و ساعت 6 PM |
دکتر راجر کادی و دکتر کورتیس شرایبر از "مرکز مراقبت از سردرد" اسپرینگ‌فیلد در میسوری تاثیر وبی‌خطربودن تزریق‌ منفرد بوتاکس را در مقابل تزریق دارونما در پیشگیری از حملات میگرن مورد ارزیابی قرار دادند.
این پژوهشگران در نشریه Headache گزارش می‌دهند که بوتاکس: "اثرات مفید،اما محدودی بر فراوانی حملات میگرن دارد، اما در پایین آوردن شدت سردرد موثر نیست."
با این وجود در بیماران درمان‌شده با بوتاکس نسبت به بیماران دریافت‌کننده دارونما تعداد "حملات" سردرد کمتر و زمان آنها کوتاه‌تر بود. به علاوه بوتاکس در بیماران، تاثیر مثبت "قابل‌اندازه‌‌گیری" بر کیفیت زندگی ایجاد کرد.
برای مثال بهبودی در "آزمون تاثیر سردرد" - یک نظرخواهی شش‌موردی در مورد درد، قدرت انجام کار، کارکرد اجتماعی، خستگی، شناخت و ناراختی عاطفی- در بیماران درمان شده با بوتاکس بسیار بیشتر از بیمارانی بود که دارونما دریافت کرده بودند.
این پژوهشگران معتقدند که بوتاکس ممکن است برای درمان بیماران دچار سردرد میگرنی که به سایر درمان‌های پیشگیری‌کننده پاسخ نمی‌دهند، گزینه مناسبی باشد.
+ نوشته شده توسط سینا در شنبه شانزدهم آذر 1387 و ساعت 6 PM |
image
+ نوشته شده توسط سینا در دوشنبه بیست و پنجم شهریور 1387 و ساعت 2 PM |

بيش از دو هزار سال پيش ارشميدس (287-212 قبل از ميلاد) فرمول هايي را براي محاسبه سطح  وجه ها ، ناحيه ها و حجم هاي جامد  مثل كره ، مخروط و سهمي يافت . روش انتگرال گيري ارشميدس استثنايي و فوق العاده بود جبر ، نقش هاي بنيادي ، كليات و حتي واحد اعشار را هم نمي دانست .

ليبنيز (1716-1646) و نيوتن (1727-1642) حسابان را كشف كردند . عقيده كليدي آنها اين بود كه مشتق گيري و انتگرال گيري اثر يكديگر را خنثي مي كنند با استفاده از اين ارتباط ها آنها توانستند تعدادي از مسائل مهم در رياضي ، فيزيك و نجوم را حل كنند.

فورير (1830-1768) در مورد رسانش گرما بوسيله سلسله زمان هاي مثلثاتي را مي خواند تا نقش هاي بنيادي را نشان دهد .رشته هاي فورير و جابجايي انتگرال امروزه در زمينه هاي مختلفي چون داروسازي و موزيك اجرا مي شود .

گائوس (1855-1777) اولين جدول انتگرال را نوشت و همراه ديگران سعي در عملي كردن انتگرال در رياضي و علوم فيزيك كرد . كايوچي (1857-1789) انتگرال را در يك دامنه همبستگي تعريف كرد . ريمان (1866-1826) و ليبيزگو (1941-1875) انتگرال معين را بر اساس يافته هاي مستدل و منطقي استوار كردند .

ليوويل (1882-1809) يك اسكلت محكم براي انتگرال گيري بوجود آورد بوسيله فهميدن اينكه چه زماني انتگرال نامعين از نقش هاي اساسي دوباره در مرحله جديد خود نقش اساسي مرحله بعد هستند . هرميت (1901-1822) يك شيوه علمي براي انتگرال گيري به صورت عقلي و فكري ( يك روش علمي براي انتگرال گيري سريع ) در دهه 1940 بعد از ميلاد استراسكي اين روش را همراه لگاريتم توسعه بخشيد .

در دهه بيستم ميلادي قبل از بوجود آمدن كامپيوترها رياضيدانان تئوري انتگرال گيري و عملي كردن آن روي جداول انتگرال را توسعه داده بودند و پيشرفت هايي حاصل شده بود .در ميان اين رياضيدانان كساني چون واتسون ، تيچمارش ، بارنر ، ملين ، ميچر ، گرانبر ، هوفريتر ، اردلي ، لوئين ، ليوك ، مگنوس ، آپل بلت ، ابرتينگر ، گرادشتاين ، اكستون ، سريواستاوا ، پرودنيكف ، برايچيكف و ماريچيف حضور داشتند .

در سال 1969 رايسيچ پيشرفت بزرگي در زمينه روش علمي گرفتن انتگرال نامعين حاصل كرد . او كارش را بر پايه تئوري عمومي و تجربي انتگرال گيري با قوانين بنيادي منتشر كرد روش او عملاً در همه گروه هاي قضيه بنيادي كارگر نيست تا زماني كه در وجود آن يك معادله سخت مشتق گيري هست كه نياز دارد تا حل شود . تمام تلاش ها ااز آن پس بر روي حل اين معادله با روش علمي براي موفقيت هاي مختلف قضيه اساسي گذاشته شد . ايت تلاش ها باعث پيشرفت كامل سير و روش علمي رايسيچ شد . در دهه 1980 پيشرفت هايي نيز براي توسعه روش او در موارد خاص از قضيه هاي مخصوص و اصلي او شد .

از قابليت تعريف انتگرال معين به نتايجي دست ميابيم كه نشان دهنده قدرتي است كه در رياضيات مي باشد (1988) جامعيت و بزرگي به ما ديدگاه موثر و قوي در مورد گسترش در  رياضيات و همچنين كارهاي انجام شده در قوانين انتگرال مي دهد . گذشته از اين رياضيات توانايي دارد تا به تعداد زيادي از نتيجه هاي مجموعه هاي مشهور انتگرال پاسخ دهد ( اينكه بفهميم اين اشتباهات ناشي از غلط هاي چاپي بوده است يا نه ) . رياضيات اين را ممكن مي سازد تا هزاران مسئله انتگرال را حل نماييم به طوريكه تا كنون در هيچ يك از كتابهاي دستنويس قبلي نيامده باشد . در آينده ديگر وظيفه ضروري انتگرال اين است كه به ازمايش تقارب خطوط ، ارزش اصلي آن و مكانيسم فرض ها بپردازد .

+ نوشته شده توسط سینا در دوشنبه بیست و پنجم شهریور 1387 و ساعت 1 PM |
به گزارش "بی بی‌سی نیوز" در پژوهشی كه توسط روانشناسان انگلیسی صورت گرفت، محققان از شركت‌كنندگان خواستند كه دست خود را در آب سرد قرار دهند و همزمان برای تحمل سردی آب ، افراد مورد آزمایش می‌توانستند بین گوش دادن به موسیقی مورد علاقه ، انجام محاسبه ذهنی یا تماشای یك برنامه تلویزیونی مورد علاقه یكی را انتخاب كنند.
در هر مورد، فردی كه به موسیقی گوش می‌داد، بیشترین حد تحمل آب سرد را داشت و گاهی اوقات پنج برابر بیشتر از دیگران توانست دست خود را در آب نگه دارد.
محققان معتقدند این امر به آن علت است كه موسیقی علاوه بر ایجاد حواس پرتی، برخلاف سایر محركها، فرد را ازنظر احساسی درگیر می‌كند.
نتیجه این تحقیق در كنفرانس انجمن روانشناسان انگلیس ارایه شد
+ نوشته شده توسط سینا در پنجشنبه شانزدهم اسفند 1386 و ساعت 1 PM |
خون مایعی لزج است که بخشی از آن را مایعی به نام پلاسما و بخش دیگر را عناصر جامد معلق در پلاسما تشکیل می‌دهد. بخش جامد خون شامل اریتروسیتها (گلبولهای قرمز خون) ، لوکوسیتها یا گلبولهای سفید و پلاکتها است.
گلبولهای قرمز یا اریتروسیتها سلولهایی هستند که در انسانها و جانوران خونگرم دارای پروتوپلاسم هموژن اما بدون هسته هستند. غشای آنها از مجموعه‌ای از لیپو پروتئینها تشکیل یافته که به مواد کلوئیدی و یون پتاسیم یا یون سدیم غیر قابل نفوذ است اما به یون کلر و بی‌کربنات و +H و OH- نفوذ پذیر است. ترکیب مواد معدنی اریتروسیتها و پلاسما مشابه هم نیستند.
مقدار پتاسیم گلبولهای قرمز انسان بیشتر از سدیم می‌باشد در حالی که نسبت این نمکها در پلاسما برعکس است. هموگلوبین ۹۰ درصد ماده خشک گلبولهای قرمز را تشکیل می‌دهد. در حالی که پروتئینها ، لیپیدها و گلوکز و نمکهای معدنی دو درصد بقیه را بوجود می‌آورند. تعیین تعداد اریتروسیتها در خون اهمیت زیادی در فیزیولوژی و کلینیک دارد. در حدود ۵.۵ میلیون گلبول قرمز در میلیمتر مکعب خون یک مرد سالم و ۴.۵ میلیون گلبول در میلیمتر مکعب خون در یک زن سالم وجود دارد.
● مشخصات گلبولهای قرمز
قطر گلبولهای قرمز بین ۷.۵ - ۷.۲ میکرون و حجم متوسط هر یک از آنها ۹۰ - ۸۸ میکرون مکعب است. ضخامت آنها در ضخیم‌ترین قسمت ۲ میکرون و در وسط یک میکرون است. از روی اندازه هر اریتروسیت و تعداد کل آنها با مساحت کلی گلبولهای قرمز را در بدن می‌توان محاسبه نمود.
چون جذب و آزاد شدن اکسیژن یعنی تبادلات آن در این سطح صورت می‌گیرد از این نظر این رقم واجد اهمیت است. زیرا تبادل اکسیژن عمل اصلی فیزیولوژیک گلبولهای قرمز است.
مجموع کل مساحت گلبولهای قرمز در خون انسان بطور متوسط ۳۵۰۰ - ۳۰۰۰ متر مربع است که این مقدار ۱۵۰۰ برابر سطح بدن می‌باشد.
شکل خاص گلبول قرمز به وسیع بودن این سطح کمک می‌کند. گلبولهای قرمز انسان پهن و در مرکز مقعرالطرفین هستند با این شکل هیچ نقطه‌ای از سلول بیشتر از ۸۵ درصد میکرون از سطح آن فاصله ندارد در صورتی که یک شکل کروی ۲.۵ میکرون از سطح فاصله دارد و کل سطح ۲۰ درصد کمتر می‌شود. این نسبت واقعی بین سطح و حجم اجزای گلبولهای قرمز عمل انتقال اکسیژن را از اندامهای تنفسی به سلولها آسانتر می‌سازد.
● هموگلوبین
هموگلوبین نقش مهمی در حمل و نقل گازهای خون بویژه اکسیژن در موجود زنده را به عهده دارد این ماده یک مولکول پیچیده شیمیایی (با وزن مولکولی ۶۸۰۰۰ دالتون) است که از یک بخش پروتئینی به نام گلوبین و چهار مولکول غیر پروتئینی به نام هم درست شده است.
مولکول هم از یک اتم آهن که می‌تواند با اکسیژن ترکیب شده و یا آن را از دست بدهد تشکیل یافته است. ظرفیت آهن (Fe+۲) بعد از ترکیب با اکسیژن تغییر نمی‌کند و همچنان دو ظرفیتی باقی می‌ماند. اگر هموگلوبین با محلول اسید کلریدریک مخلوط شود هم از گلوبین جدا می‌شود و به همین (C۳۴H۳۲N۴O۴FeCl) کریستالهایی با شکل مشخص دارد تبدیل می‌شود و در پزشکی قانونی ازهمین آزمایش برای اثبات وجود خون استفاده می‌شود.
مولکول هم از چهار حلقه پیرولی (دو باز و دو اسید) تشکیل شده است اتم آهن (Fe+۲) به بخش پروتئین یا گلوبین می‌چسبد. هنگامی که هم آهن خود را از دست می‌دهد و فقط ساختمان پیرولی باقی می‌ماند هماتو پورفیرین یا پروتو پورفیرین نامیده می‌شود.
این ماده در یک نوع خاص از مسمومیت یا اختلال متابولیکی به مقدار زیاد در بدن موجود زنده تشکیل می‌شود هماتو پورفیرین از ادرار دفع می‌گردد. هم بخش فعال یا گروه پروستیک هموگلوبین است در حالی که گلوبین یک پروتئین ناقل هم است.
● تولید گلبولهای قرمز
عمر متوسط گلبولهای قرمز خون ۱۲۰ روز است برای این که میزان گلبولهای قرمز در خون ثابت بماند باید در هر ثانیه حدود یک میلیون گلبول قرمز در مغز استخوان ساخته شود. گلبولهای قرمز در دوره جنینی در کبد و طحال و گره‌های لنفاوی ساخته می‌شوند.
اما در ماههای آخر دوره جنینی و پس از تولد تنها در مغز استخوان بوجود می‌آیند. در سالهای اول پس از تولد همه استخوانها گلبول قرمز می‌سازند ولی از حدود پنج سالگی به بعد تولید گلبول قرمز در استخوانهای دراز کاهش می‌یابد و سپس متوقف می‌شود و از آن به بعد بیشتر گلبولهای قرمز در مغز استخوانهای ستون مهره‌ها ، سر ، سینه و لگن تولید می‌شوند.
در مغز استخوان بافت زاینده‌ای وجود دارد که با چند تقسیم سلولی گلبولهای قرمز را می‌سازد سلولهای زاینده در ضمن این تغییرات هسته خود را از دست می‌دهند و مقدار زیادی هموگلوبین در سیتوپلاسم خود می‌سازند.
فعالیت ماهیچه‌ای ، صعود به ارتفاعات و گرم شدن هوا ، تولید گلبولهای قرمز را افزایش می‌دهند. سلولهای مولد گلبولهای قرمز در مغز استخوان نسبت به عواملی مانند اشعه‌های زیان آور مانند اشعه ایکس بسیار حساسند. و نخستین بخش بدن در مقابل اشعه ایکس که از کار می‌افتد همین بافت مغز استخوان است. کمبود ویتامین B۱۲ ، آهن ، نیز باعث کاهش تولید گلبولهای قرمز می‌شود.
● سرعت رسوب گلبولهای قرمز
اگر به خون ماده ضد انعقاد اضافه شود و در ظرفی بی‌حرکت باقی بماند گلبولهای قرمز آن پس از مدتی رسوب خواهند کرد. سرعت رسوب با روشهای خاصی اندازه‌گیری می‌شود که بر حسب میلیمتر در ساعت اندازه‌گیری می‌شود و این سرعت در مردان ، زنان ، اطفال و زنان حامله متفاوت است. بدین ترتیب اندازه‌گیری آن ارزش تشخیصی دارد سرعت رسوب گلبولهای قرمز ، چسبیدن آنها به یکدیگر به شکل منظم است. در اندازه‌گیری آن عواملی چون تغییر محتوی پروتئینهای خون ، تغییر گلوبولین و غیره بر سرعت رسوب آنها اثر می‌گذارد.
● گروههای خونی
بر روی غشای گلبولهای قرمز خون ۴۰۰ نوع آنتی ژن وجود دارد که برخی از آنها از نظر انتقال خون و کلینیک حائز اهمیت می‌باشند. مثل سیستم ABO. به غیر از سیستم ABO ، سیستم RH نیز در انتقال خون واجد اهمیت است. ۴۰ نوع آنتی کور در این سیستم وجود دارد که آنتی ژن D بیشترین آنتی ژنی را داشته و در انتقال خون اهمیت دارد.
● همولیز
همولیز یعنی تخریب یا شکسته شدن غشای گلبولهای قرمز و آزاد شدن هموگلوبین به پلاسمای خون که سبب قرمز و شفاف شدن پلاسما می‌شود غشای تخلیه شده از هموگلوبین را شبح خونی یا اجسام فانتومی می‌نامند. همولیز ممکن است تحت تاثیر عوامل مختلفی انجام شود مثل فشار اسمزی ، مواد شیمیایی مثل الکل ، سم مارها و همولیزین و تزریق نامتجانس.
+ نوشته شده توسط سینا در پنجشنبه شانزدهم اسفند 1386 و ساعت 1 PM |